Almost-Schur lemma

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cotlar-Stein Almost Orthogonality Lemma

When deriving the estimates on integral operators one often uses the Almost Orthogonality principle of M. Cotlar and E.M. Stein, first proved by M. Cotlar in [Cot55]. This result is classical; our excuse for formulating it once again is a need to have its weighted form which sometimes allows to reduce the number of integrations by parts in half (hereby weakening smoothness requirements), and al...

متن کامل

An Almost Periodic Noncommutative Wiener’s Lemma

We develop a theory of almost periodic elements in Banach algebras and present an abstract version of a noncommutative Wiener’s Lemma. The theory can be used, for example, to derive some of the recently obtained results in time-frequency analysis such as the spectral properties of the finite linear combinations of time-frequency shifts.

متن کامل

An Extended Schur ’ S Lemma and Its Application

The Springer modules have a combinatorial property called " coincidence of dimensions, " i.e., the Springer modules are naturally decomposed into submodules with common dimensions. Morita and Nakajima proved the property by giving modules with common dimensions whose induced modules are isomorphic to the submodules of Springer modules. They proved that the induced modules are isomorphic to the ...

متن کامل

A General Schwarz Lemma for Almost-hermitian Manifolds

We prove a version of Yau’s Schwarz Lemma for general almost-complex manifolds equipped with almost-Hermitian metrics. This requires an extension to this setting of the Laplacian comparison theorem. As an application we show that the product of two almost-complex manifolds does not admit any complete almost-Hermitian metric with bisectional curvature bounded between two negative constants that ...

متن کامل

The Johnson-Lindenstrauss lemma almost characterizes Hilbert space, but not quite

Let X be a normed space that satisfies the Johnson-Lindenstrauss lemma (J-L lemma, in short) in the sense that for any integer n and any x1, . . . , xn ∈ X there exists a linear mapping L : X → F, where F ⊆ X is a linear subspace of dimension O(log n), such that ‖xi − x j‖ ≤ ‖L(xi) − L(x j)‖ ≤ O(1) · ‖xi − x j‖ for all i, j ∈ {1, . . . , n}. We show that this implies that X is almost Euclidean ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2011

ISSN: 0944-2669,1432-0835

DOI: 10.1007/s00526-011-0413-z